Coordinate-based meta-analysis algorithms

A tour of CBMA algorithms in NiMARE.

This tutorial is intended to provide a brief description and example of each of the CBMA algorithms implemented in NiMARE. For a more detailed introduction to the elements of a coordinate-based meta-analysis, see other stuff.

Load Dataset

Note

The data used in this example come from a collection of NIDM-Results packs downloaded from Neurovault collection 1425, uploaded by Dr. Camille Maumet.

Creation of the Dataset from the NIDM-Results packs was done with custom code. The Results packs for collection 1425 are not completely NIDM-Results-compliant, so the nidmresults library could not be used to facilitate data extraction.

import os
from pprint import pprint

from nilearn.plotting import plot_stat_map

from nimare.correct import FWECorrector
from nimare.dataset import Dataset
from nimare.utils import get_resource_path

dset_file = os.path.join(get_resource_path(), "nidm_pain_dset.json")
dset = Dataset(dset_file)

# Some of the CBMA algorithms compare two Datasets,
# so we'll split this example Dataset in half.
dset1 = dset.slice(dset.ids[:10])
dset2 = dset.slice(dset.ids[10:])

Multilevel Kernel Density Analysis

from nimare.meta.cbma.mkda import MKDADensity

meta = MKDADensity()
results = meta.fit(dset)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_level-voxel_corr-FWE_method-montecarlo"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
  • 01 plot cbma
  • 01 plot cbma
  0%|          | 0/10 [00:00<?, ?it/s]
 10%|█         | 1/10 [00:00<00:02,  3.14it/s]
 20%|██        | 2/10 [00:00<00:02,  3.19it/s]
 30%|███       | 3/10 [00:00<00:02,  3.25it/s]
 40%|████      | 4/10 [00:01<00:01,  3.25it/s]
 50%|█████     | 5/10 [00:01<00:01,  3.26it/s]
 60%|██████    | 6/10 [00:01<00:01,  3.28it/s]
 70%|███████   | 7/10 [00:02<00:00,  3.28it/s]
 80%|████████  | 8/10 [00:02<00:00,  3.26it/s]
 90%|█████████ | 9/10 [00:02<00:00,  3.27it/s]
100%|██████████| 10/10 [00:03<00:00,  3.26it/s]
100%|██████████| 10/10 [00:03<00:00,  3.26it/s]
Description:
('A multilevel kernel density (MKDA) meta-analysis \\citep{wager2007meta} was '
 'performed was performed with NiMARE 0.4.1+1.gc07ed2d (RRID:SCR_017398; '
 '\\citealt{Salo2023}), using a(n) MKDA kernel. An MKDA kernel '
 '\\citep{wager2007meta} was used to generate study-wise modeled activation '
 'maps from coordinates. In this kernel method, each coordinate is convolved '
 'with a sphere with a radius of 10.0 and a value of 1. For voxels with '
 'overlapping spheres, the maximum value was retained. Summary statistics (OF '
 'values) were converted to p-values using an approximate null distribution. '
 'The input dataset included 267 foci from 21 experiments.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{wager2007meta,\n'
 '  title={Meta-analysis of functional neuroimaging data: current and future '
 'directions},\n'
 '  author={Wager, Tor D and Lindquist, Martin and Kaplan, Lauren},\n'
 '  journal={Social cognitive and affective neuroscience},\n'
 '  volume={2},\n'
 '  number={2},\n'
 '  pages={150--158},\n'
 '  year={2007},\n'
 '  publisher={Oxford University Press},\n'
 '  url={https://doi.org/10.1093/scan/nsm015},\n'
 '  doi={10.1093/scan/nsm015}\n'
 '}')

MKDA Chi-Squared

from nimare.meta.cbma.mkda import MKDAChi2

meta = MKDAChi2(kernel__r=10)
results = meta.fit(dset1, dset2)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z_desc-uniformity"),
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_desc-uniformitySize_level-cluster_corr-FWE_method-montecarlo"),
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
  • 01 plot cbma
  • 01 plot cbma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/checkouts/latest/nimare/meta/cbma/mkda.py:473: RuntimeWarning: invalid value encountered in divide
  pFgA = pAgF * pF / pA
/home/docs/checkouts/readthedocs.org/user_builds/nimare/checkouts/latest/nimare/meta/cbma/mkda.py:480: RuntimeWarning: invalid value encountered in divide
  pFgA_prior = pAgF * self.prior / pAgF_prior

  0%|          | 0/10 [00:00<?, ?it/s]
 10%|█         | 1/10 [00:00<00:05,  1.57it/s]
 20%|██        | 2/10 [00:01<00:04,  1.61it/s]
 30%|███       | 3/10 [00:01<00:04,  1.62it/s]
 40%|████      | 4/10 [00:02<00:03,  1.62it/s]
 50%|█████     | 5/10 [00:03<00:03,  1.62it/s]
 60%|██████    | 6/10 [00:03<00:02,  1.63it/s]
 70%|███████   | 7/10 [00:04<00:01,  1.63it/s]
 80%|████████  | 8/10 [00:04<00:01,  1.62it/s]
 90%|█████████ | 9/10 [00:05<00:00,  1.62it/s]
100%|██████████| 10/10 [00:06<00:00,  1.63it/s]
100%|██████████| 10/10 [00:06<00:00,  1.62it/s]
Description:
('A multilevel kernel density chi-squared analysis \\citep{wager2007meta} was '
 'performed according to the same procedure as implemented in Neurosynth with '
 'NiMARE 0.4.1+1.gc07ed2d (RRID:SCR_017398; \\citealt{Salo2023}), using a(n) '
 'MKDA kernel. An MKDA kernel \\citep{wager2007meta} was used to generate '
 'study-wise modeled activation maps from coordinates. In this kernel method, '
 'each coordinate is convolved with a sphere with a radius of 10.0 and a value '
 'of 1. For voxels with overlapping spheres, the maximum value was retained. '
 'This analysis calculated several measures. The first dataset was evaluated '
 'for uniformity of activation via a one-way chi-square test. The first input '
 'dataset included 147 foci from 10 experiments. The second input dataset '
 'included 120 foci from 11 experiments.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{wager2007meta,\n'
 '  title={Meta-analysis of functional neuroimaging data: current and future '
 'directions},\n'
 '  author={Wager, Tor D and Lindquist, Martin and Kaplan, Lauren},\n'
 '  journal={Social cognitive and affective neuroscience},\n'
 '  volume={2},\n'
 '  number={2},\n'
 '  pages={150--158},\n'
 '  year={2007},\n'
 '  publisher={Oxford University Press},\n'
 '  url={https://doi.org/10.1093/scan/nsm015},\n'
 '  doi={10.1093/scan/nsm015}\n'
 '}')

Kernel Density Analysis

from nimare.meta.cbma.mkda import KDA

meta = KDA()
results = meta.fit(dset)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_desc-size_level-cluster_corr-FWE_method-montecarlo"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
  • 01 plot cbma
  • 01 plot cbma
  0%|          | 0/10 [00:00<?, ?it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 10%|█         | 1/10 [00:00<00:03,  2.93it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 20%|██        | 2/10 [00:00<00:02,  3.08it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 30%|███       | 3/10 [00:00<00:02,  3.12it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 40%|████      | 4/10 [00:01<00:01,  3.16it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 50%|█████     | 5/10 [00:01<00:01,  3.18it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 60%|██████    | 6/10 [00:01<00:01,  3.19it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 70%|███████   | 7/10 [00:02<00:00,  3.19it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 80%|████████  | 8/10 [00:02<00:00,  3.19it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

 90%|█████████ | 9/10 [00:02<00:00,  3.18it/s]/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/latest/lib/python3.9/site-packages/nilearn/masking.py:980: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32.
  return new_img_like(mask_img, unmasked, affine)

100%|██████████| 10/10 [00:03<00:00,  3.18it/s]
100%|██████████| 10/10 [00:03<00:00,  3.16it/s]
Description:
('A kernel density (KDA) meta-analysis \\citep{wager2007meta} was performed '
 'was performed with NiMARE 0.4.1+1.gc07ed2d (RRID:SCR_017398; '
 '\\citealt{Salo2023}), using a(n) KDA kernel. A KDA kernel '
 '\\citep{wager2003valence,wager2004neuroimaging} was used to generate '
 'study-wise modeled activation maps from coordinates. In this kernel method, '
 'each coordinate is convolved with a sphere with a radius of 10.0 and a value '
 "of 1. These spheres are then summed within each study to produce the study's "
 'MA map. Summary statistics (OF values) were converted to p-values using an '
 'approximate null distribution. The input dataset included 267 foci from 21 '
 'experiments.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{wager2003valence,\n'
 '  title={Valence, gender, and lateralization of functional brain anatomy in '
 'emotion: a meta-analysis of findings from neuroimaging},\n'
 '  author={Wager, Tor D and Phan, K Luan and Liberzon, Israel and Taylor, '
 'Stephan F},\n'
 '  journal={Neuroimage},\n'
 '  volume={19},\n'
 '  number={3},\n'
 '  pages={513--531},\n'
 '  year={2003},\n'
 '  publisher={Elsevier},\n'
 '  url={https://doi.org/10.1016/S1053-8119(03)00078-8},\n'
 '  doi={10.1016/S1053-8119(03)00078-8}\n'
 '}\n'
 '@article{wager2004neuroimaging,\n'
 '  title={Neuroimaging studies of shifting attention: a meta-analysis},\n'
 '  author={Wager, Tor D and Jonides, John and Reading, Susan},\n'
 '  journal={Neuroimage},\n'
 '  volume={22},\n'
 '  number={4},\n'
 '  pages={1679--1693},\n'
 '  year={2004},\n'
 '  publisher={Elsevier},\n'
 '  url={https://doi.org/10.1016/j.neuroimage.2004.03.052},\n'
 '  doi={10.1016/j.neuroimage.2004.03.052}\n'
 '}\n'
 '@article{wager2007meta,\n'
 '  title={Meta-analysis of functional neuroimaging data: current and future '
 'directions},\n'
 '  author={Wager, Tor D and Lindquist, Martin and Kaplan, Lauren},\n'
 '  journal={Social cognitive and affective neuroscience},\n'
 '  volume={2},\n'
 '  number={2},\n'
 '  pages={150--158},\n'
 '  year={2007},\n'
 '  publisher={Oxford University Press},\n'
 '  url={https://doi.org/10.1093/scan/nsm015},\n'
 '  doi={10.1093/scan/nsm015}\n'
 '}')

Activation Likelihood Estimation

from nimare.meta.cbma.ale import ALE

meta = ALE()
results = meta.fit(dset)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_desc-size_level-cluster_corr-FWE_method-montecarlo"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
  • 01 plot cbma
  • 01 plot cbma
  0%|          | 0/10 [00:00<?, ?it/s]
 10%|█         | 1/10 [00:00<00:06,  1.39it/s]
 20%|██        | 2/10 [00:01<00:05,  1.45it/s]
 30%|███       | 3/10 [00:02<00:04,  1.48it/s]
 40%|████      | 4/10 [00:02<00:04,  1.47it/s]
 50%|█████     | 5/10 [00:03<00:03,  1.48it/s]
 60%|██████    | 6/10 [00:04<00:02,  1.49it/s]
 70%|███████   | 7/10 [00:04<00:02,  1.48it/s]
 80%|████████  | 8/10 [00:05<00:01,  1.48it/s]
 90%|█████████ | 9/10 [00:06<00:00,  1.49it/s]
100%|██████████| 10/10 [00:06<00:00,  1.49it/s]
100%|██████████| 10/10 [00:06<00:00,  1.48it/s]
Description:
('An activation likelihood estimation (ALE) meta-analysis '
 '\\citep{turkeltaub2002meta,turkeltaub2012minimizing,eickhoff2012activation} '
 'was performed with NiMARE 0.4.1+1.gc07ed2d (RRID:SCR_017398; '
 '\\citealt{Salo2023}), using a(n) ALE kernel. An ALE kernel '
 '\\citep{eickhoff2012activation} was used to generate study-wise modeled '
 'activation maps from coordinates. In this kernel method, each coordinate is '
 'convolved with a Gaussian kernel with full-width at half max values '
 'determined on a study-wise basis based on the study sample sizes according '
 'to the formulae provided in \\cite{eickhoff2012activation}. For voxels with '
 'overlapping kernels, the maximum value was retained. ALE values were '
 'converted to p-values using an approximate null distribution '
 '\\citep{eickhoff2012activation}. The input dataset included 267 foci from 21 '
 'experiments, with a total of 334 participants.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{eickhoff2012activation,\n'
 '  title={Activation likelihood estimation meta-analysis revisited},\n'
 '  author={Eickhoff, Simon B and Bzdok, Danilo and Laird, Angela R and Kurth, '
 'Florian and Fox, Peter T},\n'
 '  journal={Neuroimage},\n'
 '  volume={59},\n'
 '  number={3},\n'
 '  pages={2349--2361},\n'
 '  year={2012},\n'
 '  publisher={Elsevier},\n'
 '  url={https://doi.org/10.1016/j.neuroimage.2011.09.017},\n'
 '  doi={10.1016/j.neuroimage.2011.09.017}\n'
 '}\n'
 '@article{turkeltaub2002meta,\n'
 '  title={Meta-analysis of the functional neuroanatomy of single-word '
 'reading: method and validation},\n'
 '  author={Turkeltaub, Peter E and Eden, Guinevere F and Jones, Karen M and '
 'Zeffiro, Thomas A},\n'
 '  journal={Neuroimage},\n'
 '  volume={16},\n'
 '  number={3},\n'
 '  pages={765--780},\n'
 '  year={2002},\n'
 '  publisher={Elsevier},\n'
 '  url={https://doi.org/10.1006/nimg.2002.1131},\n'
 '  doi={10.1006/nimg.2002.1131}\n'
 '}\n'
 '@article{turkeltaub2012minimizing,\n'
 '  title={Minimizing within-experiment and within-group effects in activation '
 'likelihood estimation meta-analyses},\n'
 '  author={Turkeltaub, Peter E and Eickhoff, Simon B and Laird, Angela R and '
 'Fox, Mick and Wiener, Martin and Fox, Peter},\n'
 '  journal={Human brain mapping},\n'
 '  volume={33},\n'
 '  number={1},\n'
 '  pages={1--13},\n'
 '  year={2012},\n'
 '  publisher={Wiley Online Library},\n'
 '  url={https://doi.org/10.1002/hbm.21186},\n'
 '  doi={10.1002/hbm.21186}\n'
 '}')

Specific Co-Activation Likelihood Estimation

Important

The SCALE algorithm is very memory intensive, so we don’t run it within the documentation.

import numpy as np

from nimare.meta.cbma.ale import SCALE
from nimare.utils import vox2mm

xyz = vox2mm(
    np.vstack(np.where(dset.masker.mask_img.get_fdata())).T,
    dset.masker.mask_img.affine,
)

meta = SCALE(xyz=xyz, n_iters=10)
results = meta.fit(dset)

ALE-Based Subtraction Analysis

from nimare.meta.cbma.ale import ALESubtraction

meta = ALESubtraction(n_iters=10, n_cores=1)
results = meta.fit(dset1, dset2)

plot_stat_map(
    results.get_map("z_desc-group1MinusGroup2"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.1,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
01 plot cbma
  0%|          | 0/10 [00:00<?, ?it/s]
 10%|█         | 1/10 [00:03<00:33,  3.67s/it]
 20%|██        | 2/10 [00:03<00:13,  1.68s/it]
 30%|███       | 3/10 [00:04<00:07,  1.04s/it]
 40%|████      | 4/10 [00:04<00:04,  1.34it/s]
 50%|█████     | 5/10 [00:04<00:02,  1.73it/s]
 60%|██████    | 6/10 [00:05<00:01,  2.09it/s]
 70%|███████   | 7/10 [00:05<00:01,  2.39it/s]
 80%|████████  | 8/10 [00:05<00:00,  2.66it/s]
 90%|█████████ | 9/10 [00:05<00:00,  2.86it/s]
100%|██████████| 10/10 [00:06<00:00,  3.03it/s]
100%|██████████| 10/10 [00:06<00:00,  1.60it/s]

  0%|          | 0/228483 [00:00<?, ?it/s]
  0%|          | 2/228483 [00:00<13:41, 278.11it/s]
Description:
('An activation likelihood estimation (ALE) subtraction analysis '
 '\\citep{laird2005ale,eickhoff2012activation} was performed with NiMARE '
 'v0.4.1+1.gc07ed2d (RRID:SCR_017398; \\citealt{Salo2023}), using a(n) ALE '
 'kernel. An ALE kernel \\citep{eickhoff2012activation} was used to generate '
 'study-wise modeled activation maps from coordinates. In this kernel method, '
 'each coordinate is convolved with a Gaussian kernel with full-width at half '
 'max values determined on a study-wise basis based on the study sample sizes '
 'according to the formulae provided in \\cite{eickhoff2012activation}. For '
 'voxels with overlapping kernels, the maximum value was retained. The '
 "subtraction analysis was implemented according to NiMARE's \\citep{Salo2023} "
 'approach, which differs from the original version. In this version, '
 'ALE-difference scores are calculated between the two datasets, for all '
 'voxels in the mask, rather than for voxels significant in the main effects '
 'analyses of the two datasets. Next, voxel-wise null distributions of '
 'ALE-difference scores were generated via a randomized group assignment '
 'procedure, in which the studies in the two datasets were randomly reassigned '
 'and ALE-difference scores were calculated for the randomized datasets. This '
 'randomization procedure was repeated 10 times to build the null '
 'distributions. The significance of the original ALE-difference scores was '
 'assessed using a two-sided statistical test. The null distributions were '
 'assumed to be asymmetric, as ALE-difference scores will be skewed based on '
 'the sample sizes of the two datasets. The first input dataset (group1) '
 'included 147 foci from 10 experiments, with a total of 153 participants. The '
 'second input dataset (group2) included 120 foci from 11 experiments, with a '
 'total of 181 participants. ')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{eickhoff2012activation,\n'
 '  title={Activation likelihood estimation meta-analysis revisited},\n'
 '  author={Eickhoff, Simon B and Bzdok, Danilo and Laird, Angela R and Kurth, '
 'Florian and Fox, Peter T},\n'
 '  journal={Neuroimage},\n'
 '  volume={59},\n'
 '  number={3},\n'
 '  pages={2349--2361},\n'
 '  year={2012},\n'
 '  publisher={Elsevier},\n'
 '  url={https://doi.org/10.1016/j.neuroimage.2011.09.017},\n'
 '  doi={10.1016/j.neuroimage.2011.09.017}\n'
 '}\n'
 '@article{laird2005ale,\n'
 '  title={ALE meta-analysis: Controlling the false discovery rate and '
 'performing statistical contrasts},\n'
 '  author={Laird, Angela R and Fox, P Mickle and Price, Cathy J and Glahn, '
 'David C and Uecker, Angela M and Lancaster, Jack L and Turkeltaub, Peter E '
 'and Kochunov, Peter and Fox, Peter T},\n'
 '  journal={Human brain mapping},\n'
 '  volume={25},\n'
 '  number={1},\n'
 '  pages={155--164},\n'
 '  year={2005},\n'
 '  publisher={Wiley Online Library},\n'
 '  url={https://doi.org/10.1002/hbm.20136},\n'
 '  doi={10.1002/hbm.20136}\n'
 '}')

Total running time of the script: (1 minutes 10.767 seconds)

Gallery generated by Sphinx-Gallery