nimare.correct
.FWECorrector
- class FWECorrector(method='bonferroni', n_iters=None, n_cores=1, **kwargs)[source]
Bases:
Corrector
Perform family-wise error rate correction on a meta-analysis.
- Parameters:
method ({'bonferoni', 'montecarlo'}) – The FWE correction to use. Note that the ‘montecarlo’ method is only available for a subset of Estimators. To determine what methods are available for the Estimator you’re using, use
inspect()
.voxel_thresh (
float
, optional) – Only used ifmethod='montecarlo'
. The uncorrected voxel-level threshold to use.n_iters (
int
, default=5000) – Number of iterations to use for Monte Carlo correction. Default varies by Estimator. For publication-quality results, 5000 or more iterations are recommended.n_cores (
int
, default=1) – Number of cores to use for Monte Carlo correction. Default is 1.**kwargs – Keyword arguments to be used by the FWE correction implementation.
Methods
Perform Bonferroni FWE correction.
get_params
([deep])Get parameters for this estimator.
inspect
(result)Identify valid 'method' values for a MetaResult object.
load
(filename[, compressed])Load a pickled class instance from file.
save
(filename[, compress])Pickle the class instance to the provided file.
set_params
(**params)Set the parameters of this estimator.
transform
(result)Apply the multiple comparisons correction method to a MetaResult object.
- correct_fwe_bonferroni(p)[source]
Perform Bonferroni FWE correction.
This correction is based on the one described in Bonferroni[1] and Shaffer[2].
Warning
Do not call this method directly. Call
transform()
withmethod='bonferroni'
instead.Added in version 0.0.12.
- Parameters:
p (
numpy.ndarray
) – A 1D array of p values.- Returns:
p_corr (
numpy.ndarray
) – A 1D array of adjusted p values.tables (
dict
) – A dictionary of DataFrames with summary information from the correction. This correction method does not produce any tables, so it will be an empty dict.description_ (
str
) – A description of the correction procedure.
References
See also
nimare.stats.bonferroni
- classmethod inspect(result)[source]
Identify valid ‘method’ values for a MetaResult object.
In addition to returning a list of valid values, this method will also print out those values, divided by the value type (Estimator or generic).
- Parameters:
result (
MetaResult
) – Object for which valid correction methods (i.e., ‘method’ values) will be identified.- Returns:
List of valid ‘method’ values for the Corrector+Estimator combination, including both non-specific methods and Estimator-specific ones.
- Return type:
- classmethod load(filename, compressed=True)[source]
Load a pickled class instance from file.
- Parameters:
- Returns:
obj – Loaded class object.
- Return type:
class object
- set_params(**params)[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Return type:
self
- transform(result)[source]
Apply the multiple comparisons correction method to a MetaResult object.
- Parameters:
result (
MetaResult
) – MetaResult generated by an Estimator to be corrected for multiple comparisons.- Returns:
result – MetaResult with new corrected maps, tables, and description added.
- Return type:
Examples using nimare.correct.FWECorrector
Coordinate-based meta-analysis algorithms
Image-based meta-analysis algorithms
Meta-analytic coactivation modeling analysis