Image-based meta-analysis algorithms

A tour of IBMA algorithms in NiMARE.

This tutorial is intended to provide a brief description and example of each of the IBMA algorithms implemented in NiMARE. For a more detailed introduction to the elements of an image-based meta-analysis, see other stuff.

from nilearn.plotting import plot_stat_map

Download data

Note

The data used in this example come from a collection of NIDM-Results packs downloaded from Neurovault collection 1425, uploaded by Dr. Camille Maumet.

from nimare.extract import download_nidm_pain

dset_dir = download_nidm_pain()

Load Dataset

import os
from pprint import pprint

from nimare.dataset import Dataset
from nimare.transforms import ImageTransformer
from nimare.utils import get_resource_path

dset_file = os.path.join(get_resource_path(), "nidm_pain_dset.json")
dset = Dataset(dset_file)
dset.update_path(dset_dir)

# Calculate missing images
xformer = ImageTransformer(target=["varcope", "z"])
dset = xformer.transform(dset)
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/maskers/nifti_masker.py:110: UserWarning: imgs are being resampled to the mask_img resolution. This process is memory intensive. You might want to provide a target_affine that is equal to the affine of the imgs or resample the mask beforehand to save memory and computation time.
  warnings.warn(

Stouffer’s

from nimare.meta.ibma import Stouffers

meta = Stouffers(use_sample_size=False)
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 '(RRID:SCR_017398; \\citealt{Salo2023}) on 21 z-statistic images using the '
 'Stouffer method \\citep{stouffer1949american}.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{stouffer1949american,\n'
 '  title={The american soldier: Adjustment during army life.(studies in '
 'social psychology in world war ii), vol. 1},\n'
 '  author={Stouffer, Samuel A and Suchman, Edward A and DeVinney, Leland C '
 'and Star, Shirley A and Williams Jr, Robin M},\n'
 '  journal={Studies in social psychology in World War II},\n'
 '  year={1949},\n'
 '  publisher={Princeton Univ. Press}\n'
 '}')

Stouffer’s with weighting by sample size

meta = Stouffers(use_sample_size=True)
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 '(RRID:SCR_017398; \\citealt{Salo2023}) on 21 z-statistic images using the '
 'Stouffer method \\citep{stouffer1949american}, with studies weighted by the '
 'square root of the study sample sizes, per \\cite{zaykin2011optimally}.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{stouffer1949american,\n'
 '  title={The american soldier: Adjustment during army life.(studies in '
 'social psychology in world war ii), vol. 1},\n'
 '  author={Stouffer, Samuel A and Suchman, Edward A and DeVinney, Leland C '
 'and Star, Shirley A and Williams Jr, Robin M},\n'
 '  journal={Studies in social psychology in World War II},\n'
 '  year={1949},\n'
 '  publisher={Princeton Univ. Press}\n'
 '}\n'
 '@article{zaykin2011optimally,\n'
 '  title={Optimally weighted Z-test is a powerful method for combining '
 'probabilities in meta-analysis},\n'
 '  author={Zaykin, Dmitri V},\n'
 '  journal={Journal of evolutionary biology},\n'
 '  volume={24},\n'
 '  number={8},\n'
 '  pages={1836--1841},\n'
 '  year={2011},\n'
 '  publisher={Wiley Online Library},\n'
 '  url={https://doi.org/10.1111/j.1420-9101.2011.02297.x},\n'
 '  doi={10.1111/j.1420-9101.2011.02297.x}\n'
 '}')

Fisher’s

from nimare.meta.ibma import Fishers

meta = Fishers()
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 '(RRID:SCR_017398; \\citealt{Salo2023}) on 21 z-statistic images using the '
 'Fisher combined probability method \\citep{fisher1946statistical}.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{fisher1946statistical,\n'
 '  title={Statistical methods for research workers.},\n'
 '  author={Fisher, Ronald Aylmer and others},\n'
 '  journal={Statistical methods for research workers.},\n'
 '  number={10th. ed.},\n'
 '  year={1946},\n'
 '  publisher={Oliver and Boyd}\n'
 '}')

Permuted OLS

from nimare.correct import FWECorrector
from nimare.meta.ibma import PermutedOLS

meta = PermutedOLS(two_sided=True)
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

corrector = FWECorrector(method="montecarlo", n_iters=100, n_cores=1)
cresult = corrector.transform(results)

plot_stat_map(
    cresult.get_map("z_level-voxel_corr-FWE_method-montecarlo"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(cresult.description_)
print("References:")
pprint(cresult.bibtex_)
  • 02 plot ibma
  • 02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 "(RRID:SCR_017398; \\citealt{Salo2023}), on 21 beta images using Nilearn's "
 '\\citep{10.3389/fninf.2014.00014} permuted ordinary least squares method. '
 "Family-wise error rate correction was performed using Nilearn's "
 '\\citep{10.3389/fninf.2014.00014} permuted OLS method, in which null '
 'distributions of test statistics were estimated using the max-value '
 'permutation method detailed in \\cite{freedman1983nonstochastic}. 100 '
 'iterations were performed to generate the null distribution.')
References:
('@article{10.3389/fninf.2014.00014,\n'
 '  title={Machine learning for neuroimaging with scikit-learn},\n'
 '  author={Abraham, Alexandre and Pedregosa, Fabian and Eickenberg, Michael '
 'and Gervais, Philippe and Mueller, Andreas and Kossaifi, Jean and Gramfort, '
 'Alexandre and Thirion, Bertrand and Varoquaux, Gael},\n'
 '\tjournal={Frontiers in Neuroinformatics},\n'
 '\tvolume={8},\n'
 '\tyear={2014},\n'
 '\turl={https://www.frontiersin.org/article/10.3389/fninf.2014.00014},\n'
 '\tdoi={10.3389/fninf.2014.00014},\n'
 '\tissn={1662-5196}\n'
 '}\n'
 '@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{freedman1983nonstochastic,\n'
 '  title={A nonstochastic interpretation of reported significance levels},\n'
 '  author={Freedman, David and Lane, David},\n'
 '  journal={Journal of Business \\& Economic Statistics},\n'
 '  volume={1},\n'
 '  number={4},\n'
 '  pages={292--298},\n'
 '  year={1983},\n'
 '  publisher={Taylor \\& Francis}\n'
 '}')

Weighted Least Squares

from nimare.meta.ibma import WeightedLeastSquares

meta = WeightedLeastSquares(tau2=0)
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 '(RRID:SCR_017398; \\citealt{Salo2023}), on 21 beta images using the Weighted '
 'Least Squares approach \\citep{brockwell2001comparison}, with an a priori '
 'tau-squared value of 0 defined across all voxels.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{brockwell2001comparison,\n'
 '  title={A comparison of statistical methods for meta-analysis},\n'
 '  author={Brockwell, Sarah E and Gordon, Ian R},\n'
 '  journal={Statistics in medicine},\n'
 '  volume={20},\n'
 '  number={6},\n'
 '  pages={825--840},\n'
 '  year={2001},\n'
 '  publisher={Wiley Online Library},\n'
 '  url={https://doi.org/10.1002/sim.650},\n'
 '  doi={10.1002/sim.650}\n'
 '}')

DerSimonian-Laird

from nimare.meta.ibma import DerSimonianLaird

meta = DerSimonianLaird()
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 '(RRID:SCR_017398; \\citealt{Salo2023}), on 21 beta and variance images using '
 'the DerSimonian-Laird method \\citep{dersimonian1986meta}, in which '
 'tau-squared is estimated on a voxel-wise basis using the method-of-moments '
 'approach \\citep{dersimonian1986meta,kosmidis2017improving}.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{dersimonian1986meta,\n'
 '  title={Meta-analysis in clinical trials},\n'
 '  author={DerSimonian, Rebecca and Laird, Nan},\n'
 '  journal={Controlled clinical trials},\n'
 '  volume={7},\n'
 '  number={3},\n'
 '  pages={177--188},\n'
 '  year={1986},\n'
 '  publisher={Elsevier}\n'
 '}\n'
 '@article{kosmidis2017improving,\n'
 '  title={Improving the accuracy of likelihood-based inference in '
 'meta-analysis and meta-regression},\n'
 '  author={Kosmidis, Ioannis and Guolo, Annamaria and Varin, Cristiano},\n'
 '  journal={Biometrika},\n'
 '  volume={104},\n'
 '  number={2},\n'
 '  pages={489--496},\n'
 '  year={2017},\n'
 '  publisher={Oxford University Press},\n'
 '  url={https://doi.org/10.1093/biomet/asx001},\n'
 '  doi={10.1093/biomet/asx001}\n'
 '}')

Hedges

from nimare.meta.ibma import Hedges

meta = Hedges()
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 '(RRID:SCR_017398; \\citealt{Salo2023}), on 21 beta and variance images using '
 'the Hedges method \\citep{hedges2014statistical}, in which tau-squared is '
 'estimated on a voxel-wise basis.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@book{hedges2014statistical,\n'
 '  title={Statistical methods for meta-analysis},\n'
 '  author={Hedges, Larry V and Olkin, Ingram},\n'
 '  year={2014},\n'
 '  publisher={Academic press}\n'
 '}')

Fixed Effects Meta-Analysis with Hedges’ g

from nimare.meta.ibma import FixedEffectsHedges

meta = FixedEffectsHedges(tau2=0)
results = meta.fit(dset)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
)

print("Description:")
pprint(results.description_)
print("References:")
pprint(results.bibtex_)
02 plot ibma
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),
Description:
('An image-based meta-analysis was performed with NiMARE 0.4.1 '
 '(RRID:SCR_017398; \\citealt{Salo2023}), on 21 t-statistic images using '
 "Heges' g as point estimates and the variance of bias-corrected Cohen's in a "
 'Weighted Least Squares approach '
 '\\citep{brockwell2001comparison,bossier2019}, with an a priori tau-squared '
 'value of 0 defined across all voxels.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{brockwell2001comparison,\n'
 '  title={A comparison of statistical methods for meta-analysis},\n'
 '  author={Brockwell, Sarah E and Gordon, Ian R},\n'
 '  journal={Statistics in medicine},\n'
 '  volume={20},\n'
 '  number={6},\n'
 '  pages={825--840},\n'
 '  year={2001},\n'
 '  publisher={Wiley Online Library},\n'
 '  url={https://doi.org/10.1002/sim.650},\n'
 '  doi={10.1002/sim.650}\n'
 '}')

Total running time of the script: (1 minutes 45.906 seconds)

Gallery generated by Sphinx-Gallery