The Corrector class

Here we take a look at multiple comparisons correction in meta-analyses.

from pprint import pprint

import matplotlib.pyplot as plt
import seaborn as sns
from nilearn.plotting import plot_stat_map

Download data

from nimare.extract import download_nidm_pain

dset_dir = download_nidm_pain()

Load Dataset

import os

from nimare.dataset import Dataset
from nimare.utils import get_resource_path

dset_file = os.path.join(get_resource_path(), "nidm_pain_dset.json")
dset = Dataset(dset_file)
dset.update_path(dset_dir)

mask_img = dset.masker.mask_img

Multiple comparisons correction in coordinate-based meta-analyses

Tip

For more information multiple comparisons correction and CBMA in NiMARE, see Multiple comparisons correction.

from nimare.meta.cbma.ale import ALE

# First, we need to fit the Estimator to the Dataset.
meta = ALE(null_method="approximate")
results = meta.fit(dset)

# We can check which FWE correction methods are available for the ALE Estimator
# with the ``inspect`` class method.
from nimare.correct import FWECorrector

print(FWECorrector.inspect(results))
['bonferroni', 'montecarlo']

Apply the Corrector to the MetaResult

Now that we know what FWE correction methods are available, we can use one.

The “montecarlo” method is a special one that is implemented within the Estimator, rather than in the Corrector.

corr = FWECorrector(method="montecarlo", n_iters=50, n_cores=2)
cres = corr.transform(results)

DISTS_TO_PLOT = [
    "values_desc-size_level-cluster_corr-fwe_method-montecarlo",
    "values_desc-mass_level-cluster_corr-fwe_method-montecarlo",
    "values_level-voxel_corr-fwe_method-montecarlo",
]
XLABELS = [
    "Maximum Cluster Size (Voxels)",
    "Maximum Cluster Mass",
    "Maximum Summary Statistic (ALE Value)",
]

fig, axes = plt.subplots(figsize=(8, 8), nrows=3)
null_dists = cres.estimator.null_distributions_

for i_ax, dist_name in enumerate(DISTS_TO_PLOT):
    xlabel = XLABELS[i_ax]
    sns.histplot(x=null_dists[dist_name], bins=40, ax=axes[i_ax])
    axes[i_ax].set_title(dist_name)
    axes[i_ax].set_xlabel(xlabel)
    axes[i_ax].set_xlim(0, None)

fig.tight_layout()
values_desc-size_level-cluster_corr-fwe_method-montecarlo, values_desc-mass_level-cluster_corr-fwe_method-montecarlo, values_level-voxel_corr-fwe_method-montecarlo
  0%|          | 0/50 [00:00<?, ?it/s]
  2%|▏         | 1/50 [00:06<05:42,  6.99s/it]
  4%|▍         | 2/50 [00:07<02:21,  2.96s/it]
  6%|▌         | 3/50 [00:08<01:35,  2.04s/it]
  8%|▊         | 4/50 [00:08<00:59,  1.30s/it]
 10%|█         | 5/50 [00:08<00:49,  1.11s/it]
 12%|█▏        | 6/50 [00:09<00:35,  1.25it/s]
 14%|█▍        | 7/50 [00:10<00:35,  1.22it/s]
 16%|█▌        | 8/50 [00:10<00:27,  1.51it/s]
 18%|█▊        | 9/50 [00:10<00:26,  1.58it/s]
 20%|██        | 10/50 [00:11<00:24,  1.62it/s]
 22%|██▏       | 11/50 [00:12<00:23,  1.69it/s]
 24%|██▍       | 12/50 [00:12<00:20,  1.83it/s]
 26%|██▌       | 13/50 [00:12<00:19,  1.93it/s]
 28%|██▊       | 14/50 [00:13<00:20,  1.77it/s]
 30%|███       | 15/50 [00:14<00:18,  1.94it/s]
 32%|███▏      | 16/50 [00:14<00:17,  1.89it/s]
 34%|███▍      | 17/50 [00:14<00:15,  2.10it/s]
 36%|███▌      | 18/50 [00:15<00:17,  1.79it/s]
 38%|███▊      | 19/50 [00:16<00:15,  2.01it/s]
 40%|████      | 20/50 [00:16<00:15,  1.89it/s]
 42%|████▏     | 21/50 [00:16<00:13,  2.15it/s]
 44%|████▍     | 22/50 [00:17<00:15,  1.78it/s]
 46%|████▌     | 23/50 [00:18<00:13,  2.04it/s]
 48%|████▊     | 24/50 [00:18<00:14,  1.84it/s]
 50%|█████     | 25/50 [00:19<00:11,  2.19it/s]
 52%|█████▏    | 26/50 [00:19<00:13,  1.72it/s]
 54%|█████▍    | 27/50 [00:20<00:10,  2.11it/s]
 56%|█████▌    | 28/50 [00:20<00:12,  1.80it/s]
 58%|█████▊    | 29/50 [00:21<00:09,  2.25it/s]
 60%|██████    | 30/50 [00:21<00:11,  1.70it/s]
 62%|██████▏   | 31/50 [00:22<00:08,  2.16it/s]
 64%|██████▍   | 32/50 [00:22<00:10,  1.75it/s]
 68%|██████▊   | 34/50 [00:24<00:09,  1.77it/s]
 72%|███████▏  | 36/50 [00:25<00:07,  1.86it/s]
 76%|███████▌  | 38/50 [00:26<00:06,  1.81it/s]
 80%|████████  | 40/50 [00:27<00:05,  1.89it/s]
 82%|████████▏ | 41/50 [00:27<00:04,  2.21it/s]
 84%|████████▍ | 42/50 [00:28<00:04,  1.74it/s]
 88%|████████▊ | 44/50 [00:29<00:03,  1.91it/s]
 90%|█████████ | 45/50 [00:29<00:02,  2.13it/s]
 92%|█████████▏| 46/50 [00:30<00:02,  1.83it/s]
 94%|█████████▍| 47/50 [00:30<00:01,  2.02it/s]
 96%|█████████▌| 48/50 [00:31<00:01,  1.91it/s]
 98%|█████████▊| 49/50 [00:31<00:00,  2.15it/s]
100%|██████████| 50/50 [00:32<00:00,  1.95it/s]
100%|██████████| 50/50 [00:32<00:00,  1.55it/s]

You can also look at the description of the Corrector.

print("Description:")
pprint(cres.description_)
print("References:")
pprint(cres.bibtex_)
Description:
('An activation likelihood estimation (ALE) meta-analysis '
 '\\citep{turkeltaub2002meta,turkeltaub2012minimizing,eickhoff2012activation} '
 'was performed with NiMARE 0.4.1 (RRID:SCR_017398; \\citealt{Salo2023}), '
 'using a(n) ALE kernel. An ALE kernel \\citep{eickhoff2012activation} was '
 'used to generate study-wise modeled activation maps from coordinates. In '
 'this kernel method, each coordinate is convolved with a Gaussian kernel with '
 'full-width at half max values determined on a study-wise basis based on the '
 'study sample sizes according to the formulae provided in '
 '\\cite{eickhoff2012activation}. For voxels with overlapping kernels, the '
 'maximum value was retained. ALE values were converted to p-values using an '
 'approximate null distribution \\citep{eickhoff2012activation}. The input '
 'dataset included 267 foci from 21 experiments, with a total of 334 '
 'participants. Family-wise error rate correction was performed using a Monte '
 'Carlo procedure. In this procedure, null datasets are generated in which '
 'dataset coordinates are substituted with coordinates randomly drawn from the '
 'meta-analysis mask, and maximum values are retained. This procedure was '
 'repeated 50 times to build null distributions of summary statistics, cluster '
 'sizes, and cluster masses. Clusters for cluster-level correction were '
 'defined using edge-wise connectivity and a voxel-level threshold of p < '
 '0.001 from the uncorrected null distribution.')
References:
('@article{Salo2023,\n'
 '  doi = {10.52294/001c.87681},\n'
 '  url = {https://doi.org/10.52294/001c.87681},\n'
 '  year = {2023},\n'
 '  volume = {3},\n'
 '  pages = {1 - 32},\n'
 '  author = {Taylor Salo and Tal Yarkoni and Thomas E. Nichols and '
 'Jean-Baptiste Poline and Murat Bilgel and Katherine L. Bottenhorn and Dorota '
 'Jarecka and James D. Kent and Adam Kimbler and Dylan M. Nielson and Kendra '
 'M. Oudyk and Julio A. Peraza and Alexandre Pérez and Puck C. Reeders and '
 'Julio A. Yanes and Angela R. Laird},\n'
 '  title = {NiMARE: Neuroimaging Meta-Analysis Research Environment},\n'
 '  journal = {Aperture Neuro}\n'
 '}\n'
 '@article{eickhoff2012activation,\n'
 '  title={Activation likelihood estimation meta-analysis revisited},\n'
 '  author={Eickhoff, Simon B and Bzdok, Danilo and Laird, Angela R and Kurth, '
 'Florian and Fox, Peter T},\n'
 '  journal={Neuroimage},\n'
 '  volume={59},\n'
 '  number={3},\n'
 '  pages={2349--2361},\n'
 '  year={2012},\n'
 '  publisher={Elsevier},\n'
 '  url={https://doi.org/10.1016/j.neuroimage.2011.09.017},\n'
 '  doi={10.1016/j.neuroimage.2011.09.017}\n'
 '}\n'
 '@article{turkeltaub2002meta,\n'
 '  title={Meta-analysis of the functional neuroanatomy of single-word '
 'reading: method and validation},\n'
 '  author={Turkeltaub, Peter E and Eden, Guinevere F and Jones, Karen M and '
 'Zeffiro, Thomas A},\n'
 '  journal={Neuroimage},\n'
 '  volume={16},\n'
 '  number={3},\n'
 '  pages={765--780},\n'
 '  year={2002},\n'
 '  publisher={Elsevier},\n'
 '  url={https://doi.org/10.1006/nimg.2002.1131},\n'
 '  doi={10.1006/nimg.2002.1131}\n'
 '}\n'
 '@article{turkeltaub2012minimizing,\n'
 '  title={Minimizing within-experiment and within-group effects in activation '
 'likelihood estimation meta-analyses},\n'
 '  author={Turkeltaub, Peter E and Eickhoff, Simon B and Laird, Angela R and '
 'Fox, Mick and Wiener, Martin and Fox, Peter},\n'
 '  journal={Human brain mapping},\n'
 '  volume={33},\n'
 '  number={1},\n'
 '  pages={1--13},\n'
 '  year={2012},\n'
 '  publisher={Wiley Online Library},\n'
 '  url={https://doi.org/10.1002/hbm.21186},\n'
 '  doi={10.1002/hbm.21186}\n'
 '}')

Show corrected results

MAPS_TO_PLOT = [
    "z",
    "z_desc-size_level-cluster_corr-FWE_method-montecarlo",
    "z_desc-mass_level-cluster_corr-FWE_method-montecarlo",
    "z_level-voxel_corr-FWE_method-montecarlo",
]
TITLES = [
    "Uncorrected z-statistics",
    "Cluster-size FWE-corrected z-statistics",
    "Cluster-mass FWE-corrected z-statistics",
    "Voxel-level FWE-corrected z-statistics",
]

fig, axes = plt.subplots(figsize=(8, 10), nrows=4)

for i_ax, map_name in enumerate(MAPS_TO_PLOT):
    title = TITLES[i_ax]
    plot_stat_map(
        cres.get_map(map_name),
        draw_cross=False,
        cmap="RdBu_r",
        symmetric_cbar=True,
        threshold=0.5,
        cut_coords=[0, 0, -8],
        figure=fig,
        axes=axes[i_ax],
    )
    axes[i_ax].set_title(title)
Uncorrected z-statistics, Cluster-size FWE-corrected z-statistics, Cluster-mass FWE-corrected z-statistics, Voxel-level FWE-corrected z-statistics

Multiple comparisons correction in image-based meta-analyses

from nimare.correct import FDRCorrector
from nimare.meta.ibma import Stouffers

meta = Stouffers(resample=True)
results = meta.fit(dset)
print(f"FWECorrector options: {FWECorrector.inspect(results)}")
print(f"FDRCorrector options: {FDRCorrector.inspect(results)}")
FWECorrector options: ['bonferroni']
FDRCorrector options: ['indep', 'negcorr']

Note that the FWECorrector does not support a “montecarlo” method for the Stouffers Estimator. This is because NiMARE does not have a Monte Carlo-based method implemented for most IBMA algorithms.

Apply the Corrector to the MetaResult

corr = FDRCorrector(method="indep", alpha=0.05)
cres = corr.transform(results)

Show corrected results

fig, axes = plt.subplots(figsize=(8, 6), nrows=2)
plot_stat_map(
    cres.get_map("z"),
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.5,
    cut_coords=[0, 0, -8],
    figure=fig,
    axes=axes[0],
)
axes[0].set_title("Uncorrected z-statistics")
plot_stat_map(
    cres.get_map("z_corr-FDR_method-indep"),
    draw_cross=False,
    cmap="RdBu_r",
    symmetric_cbar=True,
    threshold=0.5,
    cut_coords=[0, 0, -8],
    figure=fig,
    axes=axes[1],
)
axes[1].set_title("FDR-corrected z-statistics")
Uncorrected z-statistics, FDR-corrected z-statistics
/home/docs/checkouts/readthedocs.org/user_builds/nimare/envs/stable/lib/python3.9/site-packages/nilearn/plotting/img_plotting.py:1317: UserWarning: Non-finite values detected. These values will be replaced with zeros.
  safe_get_data(stat_map_img, ensure_finite=True),

Text(0.5, 1.0, 'FDR-corrected z-statistics')

Total running time of the script: (0 minutes 52.758 seconds)

Gallery generated by Sphinx-Gallery